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Language is the most distinctive feature of humans, but there is no
consensus on what is characteristic of language. From the point of
view of computing, we argue that ‘the human brain circuitry that
implements language is Turing complete’. This thesis makes evolu-
tionary sense, and natural languages are expressive enough, but two
issues against it remain: natural language syntax is decidable, and
not every possible language can be a natural language. We answer
the first showing that the syntax of a complete language can be
decidable, and blaming functional semantics for the undecidability,
where functional semantics is the semantics of syntax. To answer
the second we distinguish native language, first language, and later
languages, where all natural languages are first languages acquired
during a critical period that eases the process by preventing some
possibilities. The thesis supports the weak version of the linguistic
relativity hypothesis, and explains the role played by language in
the cognitive gap that separates our species from the rest.

Keywords: Universal Grammar, Turing completeness, language
evolution

§1 Introduction
¶1 · The word ‘universal’ is used differently in computing, as in ‘universal Turing machine’,
and in linguistics, as in ‘Universal Grammar’. But: Could it be that both ‘universals’ are
nevertheless the same?
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¶2 · From Chomsky (1959), we deduce that for each universal Turing machine there is a
universal grammar, and conversely, meaning that a universal grammar is equivalent to
a universal Turing machine, §2.1. Meanwhile in linguistics, following Chomsky (2005),
Universal Grammar is the human brain circuitry that implements the faculty of language,
§2.2. So the definitive resolution is achieved only when we show that the human brain
has the computing capacity of a universal Turing machine, according to Turing (1936),
§2.3, and that language uses this capacity completely, §2.4. Then, Universal Grammar is
a universal grammar, and our answer is: yes .
¶3 · The thesis that Universal Grammar is a universal grammar can also be formulated
saying that Universal Grammar is Turing complete. In any case, the thesis implies that
Universal Grammar implements a complete language, which is undecidable. We find that
the syntax of a complete language has to be infinite, but that it can and it should be
decidable, §3.1, and that the complete language has to implement a functional semantics,
which is a semantics of syntax, and then it should be part of syntax, §3.2.
¶4 · The thesis that Universal Grammar is Turing complete implies that there are not
unlearnable languages, and this together with the fact that natural languages are neither
one nor any, requires distinguishing native language, first language, and later languages.
Native language is a developed inaccessible mentalese, §4.1, first language is a natural
language acquired by genetic endowment and by experience, §4.2, and later languages
are those that can be learned, in part by instruction, §4.3.
¶5 · Language can be seen as a thinking tool that helps to reason about problems, and
then its purpose is to adapt those problems to the hardware that resolves them, §5. From
that point of view, the thesis that Universal Grammar is Turing complete has some other
implications. One is that language influences thinking, but that a complete language does
not limit thinking, supporting the weak version of the linguistic relativity hypothesis.
Another is that the thesis explains the rôle played by language in the cognitive gap that
separates our species from all others. This is because we are the first and the only Turing
complete species, and because Turing completeness is the capacity to do by software
whatever hardware does. Then, a single Turing complete living individual can imagine
anything evolution could build, so a complete individual can solve quickly what evolution
would solve in generations over evolutionary time spams, if ever. Turing completeness is
evolutionarily disruptive.
¶6 · A somewhat in reverse order summary is presented as conclusion, §6.

§2 Thesis

§2.1 Hierarchy
¶1 · Chomsky (1959) presents a hierarchy of grammars. A grammar of a language is a
device that is capable of enumerating all the language sentences. And, in this context,
language is the (usually infinite) set of all the valid syntactic sentences.
¶2 · At the end of section 2 in that paper, page 143, we read: “A type 0 grammar
(language) is one that is unrestricted. Type 0 grammars are essentially Turing machines”.
At the beginning of section 3, same page, we find two theorems.
Theorem 1. For both grammars and languages, type 0 ⊇ type 1 ⊇ type 2 ⊇ type 3.
Theorem 2. Every recursively enumerable set of strings is a type 0 language

(and conversely).
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Then theorem 2 is explained: “That is, a grammar of type 0 is a device with the
generative power of a Turing machine.”

¶3 · From the two theorems we can deduce four corollaries.

Corollary 1. The set of all type 0 grammars (languages) is equal to the set of all
grammars (languages).
This is because, according to theorem 1, type 0 is the superset of all grammars
(languages), and more generally because type 0 is unrestricted.

Corollary 2. For each Turing machine there is a type 0 grammar (and conversely).
This is equivalent to theorem 2, but in terms of grammars (devices) instead of
languages (sets).

Corollary 3. For each Turing machine there is a grammar (and conversely).
This results by applying corollary 1 to corollary 2.

Corollary 4. For each universal Turing machine there is a universal grammar
(and conversely).
This is just a special case of corollary 3.

¶4 · The universal Turing machine was defined by Turing (1936). This is the first para-
graph of section 6, titled “The universal computing machine”:
“It is possible to invent a single machine which can be used to compute any computable
sequence. If this machine U is supplied with a tape on the beginning of which is written
the S.D [standard description] of some computing machine M, then U will compute the
same sequence as M. In this section I explain in outline the behaviour of the machine.
The next section is devoted to giving the complete table for U .”
¶5 · Therefore, while type 0 is no condition, so any Turing machine is type 0, and then any
table makes a type 0 Turing machine, universality, also known as Turing completeness,
is a very strict condition, and not every Turing machine is universal, that is, not every
table makes a universal Turing machine. For that reason Turing had to write section 7!
And Turing completeness is a very interesting computing property: Turing completeness
is the capacity to do by software whatever hardware does, because just by writing on the
tape of a universal Turing machine we compute whatever any Turing machine computes.

¶6 · Then, according to corollary 4, for each universal Turing machine, which can be
programmed to behave as any Turing machine, there is a universal grammar, which can
be programmed to behave as any grammar, and conversely, and therefore a universal
grammar is equivalent to a universal Turing machine. And remember that Turing com-
pleteness is the computing capacity of a universal Turing machine, which is the maximum
computing capacity, and then universal grammars are Turing complete.

§2.2 Universal Grammar

¶1 · In computing, a universal grammar is a device that can be programmed to generate
any language, while in linguistics, Universal Grammar is a theoretical concept posited to
explain why humans acquire language, but other species do not. So we will write Universal
Grammar, capitalized, to refer to the linguistic concept, and universal grammar, all in
lower case, to refer to the computing device. Therefore universal grammar is a well-
defined mathematical concept, while Universal Grammar is a no so well defined concept
in linguistics, and then our next task will be to find a precise definition of Universal
Grammar that we can compare to the mathematical one.

¶2 · According to Chomsky (2005), there are three factors that explain “the growth of
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language in the individual”, that is, the acquisition of language:
◦ genetic endowment,
◦ experience, and
◦ other principles not specific to the faculty of language.

Universal Grammar is what explains why a human child exposed to enough linguistic
experience acquires language, and why a chimpanzee does not. Then, Universal Grammar
is behind the first factor, genetic endowment, because it is the only factor that makes a
difference between humans and apes. And, as genetic code evolves and encodes the body,
we can infer two consequences: Universal Grammar evolves, and Universal Grammar
encodes our linguistic machinery.

¶3 · That was the evolutionary point of view of language acquisition, but, to compare
Universal Grammar with a computing device, we need to see it from the computational
point of view. And, if we humans have language, while other species have not, it is
because of the specific computational design of our brains. So this is the definition that
we will use here: Universal Grammar is the human brain circuitry that implements the
faculty of language. And then, to characterize Universal Grammar, we have to investigate
the linguistic capacity of the human brain. But, before going on, let us see two notes on
two assumptions concerning the computational definition.

¶4 · First: The definition of Universal Grammar that we have chosen uses the material
assumption. The material assumption can be stated like this: when a physical object
performs a behavior that provides a function, we assume that the function is somehow
instantiated physically in the object. We then say that the object, or a part of it,
implements the function. You can consider that the material assumption describes what
really happens, or just use the assumption as a figure of speech that allows you to refer
metaphorically to a function as if it were a thing.

¶5 · Second: Being computational, the definition of Universal Grammar that we have
chosen excludes any non-computational consideration, as for example the optimization of
the human vocal tract for language. But, though not explicitly, the original formulation
is also excluding those considerations under the assumption that they are not essential
for language, because they do not preclude apes from acquiring a full sign language. In
this sense, the computational definition, Universal Grammar is the computing circuitry
for language, is more explicit and clear than the original one, Universal Grammar is the
genetic code for language.

§2.3 Computing

¶1 · To assess the human brain capacity we will examine our computing capacity. Com-
puting was founded by Turing (1936) to serve as a mathematical model of problem solving.
Turing (1936) defines his machine to prove that the Entscheidungsproblem, which is the
German word for ‘decision problem’, is unsolvable. After defining the Turing machine,
he shows that there is not any Turing machine that can solve the problem. But this
proof is valid only under the assumption that the set of Turing machines exhausts the
ways of solving problems, where each Turing machine is a way of solving, because then
that no Turing machine solves a problem implies that there is no way of solving it. This
assumption is Church’s thesis reformulated for problem solving.

¶2 · Computing is a successful model of problem solving because it abstracts away the
limitations of a device in memory and speed from its computing capacity, and because we
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humans exhibit that computing capacity completely. When Turing wrote his 1936 paper,
a computer was a person. So the Turing machine, as it was presented by Turing (1936)
himself, models the calculations done by a human computer with a finite internal memory
who can access as much external memory as he needs and who has not time limitations.
This means that we can compute whatever any Turing machine can compute provided
that we can access as much external memory as we need and that we have enough time
to accomplish the computation. These two conditions refer to memory access and to
available time, and they do not refer to computing capacity, and therefore we are Turing
complete in computing capacity.

¶3 · We are Turing complete, and this means that our brain computing capacity is the
computing capacity of a universal Turing machine, that is, the maximum computing
capacity. Mathematically, being Turing complete is being able to compute any recursive
function, and practically a computing device is Turing complete if and only if it can be
programmed to perform any algorithm. Then we will call the language needed to program
a Turing complete device to perform any algorithm a complete language. For example,
Turing (1936) used the standard descriptions as complete language, as we saw in §2.1,
but other complete languages are possible. The specific requirements that any complete
language has to fulfill are presented below, in §3.
¶4 · Turing completeness is the pan-computing capability, because it is the capability of
executing any possible computation. A consequence is that any Turing complete device
can emulate any computing device, including the Turing complete ones, and this implies
that any complete language can be translated to any complete language.

¶5 · On the other hand, a Turing complete device has to be able to compute any algorithm,
and therefore failing just one is disqualifying. Then, that we are the only species that can
learn to count up to any number implies that we are the only Turing complete species.

¶6 · And now, using the material assumption again, from the fact that our brain is Turing
complete, we assume that there is some circuitry inside our brain that implements Turing
completeness. Calling every Turing complete device a complete engine, we can say that
there is a complete engine inside our brain, but not inside other species brains, to mean
that only our species is Turing complete.

§2.4 Completeness

¶1 · We have seen that our brain capacity is the maximum computing capacity, but here
we are only interested in our linguistic capacity. So we must consider the possibility
that language does not use the full computing capacity of the brain, and, more precisely,
that Universal Grammar does not include the brain circuitry that implements Turing
completeness. We will call this possibility the incomplete hypothesis. Now we will see
that it is wrong, because the opposite possibility is right. That is, we will show that
Universal Grammar is Turing complete.

¶2 · Evolution But firstly, we will see that the incomplete hypothesis has serious diffi-
culties with evolution. If language does not use the complete engine, as the incomplete
hypothesis says, then language could not influence the evolution of the complete engine.
Then the supporters of the incomplete hypothesis should explain, without even mention-
ing language, why our pan-computing capability, that is, Turing completeness, evolved.
Their task is very difficult because computing has a close relationship with language and
grammar, as shown by Chomsky (1959).
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¶3 · Because mathematics does use the complete engine, for example when dealing with
recursion, it would also be very difficult for the supporters of the incomplete hypothe-
sis to explain why two human capabilities, language and mathematics, which are both
peculiarities only found in humans, have nevertheless evolved separately.

¶4 · I have argued (in Casares 2016) that syntax and problem solving have co-evolved
towards Turing completeness, and therefore that syntax was instrumental in achieving
Turing completeness. If this were the case, then evolution would not fit with the incom-
plete hypothesis.

¶5 · Argument If the incomplete hypothesis were right, then language would be unable
to use some mathematical expressions. Some will say that this is the case, showing some
artificial constructions not found in any natural language. But firstly note that being
able to show them, although in quotes, means that they can be used. Secondly see that
the artificial languages used in computing also use constructions not found in any natural
language, and that, anyway, these artificial constructions can be internalized and used
easily, effortless, and unconsciously, by good programmers. And thirdly note that those
good programmers and mathematicians use naturally those artificial constructions when
they talk to each other.

¶6 · Also, in an English article about a Spanish writer there will usually be some text
examples in Spanish between quotation marks. In that case, it would be a syntactic error
if the quoted Spanish text would follow the English syntactic rules. Quotation makes a
strong case against the incomplete hypothesis, because natural languages can incorporate
any foreign or artificial construction by using it.

¶7 · For example, in a Lisp manual written in English there would be some parts fol-
lowing the English rules, and some other quoted parts following the Lisp rules that are
being explained in the manual. Lisp is a complete language because we can express and
compute any recursive function in Lisp, see McCarthy (1960), and therefore English is
a complete language because we can define and mean the whole Lisp in English, see for
example the manual by McCarthy et al. (1962), so we can fully translate Lisp to En-
glish. This has settled the question, for one needs a Turing complete device to implement
a complete language, and then a complete engine is needed to speak English, and, in
general, the computing capacity of a universal Turing machine is needed to speak any
natural language in which Lisp can be fully explained. The conclusion is that Universal
Grammar has to be Turing complete.

¶8 · In fact, any full explanation of recursion in a natural language is a proof that that
natural language is complete. For example, Gödel (1930) proves that German is complete,
and Turing (1936) proves that English is complete.

¶9 · For these reasons, I disregard the incomplete hypothesis. See that, in the end, this
only means that I consider that the Turing complete brain circuitry is part of the circuitry
that implements language, or, in other words, that a complete engine is part of Universal
Grammar, and therefore that Universal Grammar is Turing complete, or, in other words,
that Universal Grammar is a universal grammar.
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§3 Requirements for completion

§3.1 Syntax
¶1 · That Universal Grammar is Turing complete seems to contradict the linguistic con-
sensus that, in the hierarchy of Chomsky (1959), natural languages are located between
context-free and context-sensitive languages, see for example Stabler (2014). To see that
there is not contradiction, you have to see that the syntax of a complete language can
be decidable. And this is easy; take for example Lisp as presented by McCarthy (1960):
Lisp syntax is context-free, and Lisp itself is complete. That’s it.
¶2 · When the syntax of a language is decidable and the language is complete, and then
undecidable, we have to blame semantics for the undecidability, and for the completeness!
But take Lisp again. Lisp is run by computers, and a computer is a syntactic machine; in
fact, the computer is the prototype of syntactic machine, because it is devoid of meanings,
isn’t it? Well, yes and no. Let me explain.
¶3 · First, remember that a Turing complete device can perform any computation that is
entered to it as a program written in its complete language. Then, it is a requirement
that any computation could be expressed in the complete language. And it is also a
requirement that the meaning of any such program be known by the Turing complete
device to perform the computation specified. The first requirement is for syntax, and the
second for semantics. Let us see them one by one.
¶4 · The number of computations is equal to the number of Turing machines, that is equal
to the number of natural numbers, as proved by Turing (1936), where the set of natural
numbers N is an infinite enumerable set. This means that any infinite enumerable set
can be used as syntax of a complete language. So we can already state the syntactic
requirement for completion: the set of syntactic objects has to be infinite enumerable, or
bigger. In mathematical terms, |Sc| ≥ ℵ0, where Sc is the set of the syntactic objects of
a complete language, and ℵ0 is the smallest infinite cardinal number, which is also the
cardinality of the natural numbers, ℵ0 = |N|.
¶5 · Remember that an infinite enumerable set, if it is recursive as defined by Post (1944),
then it is decidable. This shows that the syntax of a complete language can be decidable.
Then, while mathematics states the syntactic requirement for completion: the set of
syntactic objects has to be infinite, engineering states the syntactic recommendation
for completion: the set of syntactic objects should be infinite decidable. For example,
natural language, Lisp, Turing’s standard descriptions, and even arithmetic, all fulfill the
syntactic requirement for completion, and all follow the recommendation.

§3.2 Functional semantics
¶1 · Any infinite enumerable set can be the syntax of a complete language because then we
can map each possible computation to a different syntactic object. Thus, any computation
can be expressed in the complete language. This is nice, but still useless. The Turing
complete device has to take any syntactic object expressing a computation and effectively
perform that specific computation. This is the semantic requirement for completion,
because the Turing complete device has to know the meaning of the syntactic object to
perform the calculation.
¶2 · The semantic requirement for completion can be formulated in different ways. When
the infinite enumerable set of syntactic objects is the set of natural numbers, N, which is
the canonical infinite enumerable set, we get the base case. In the base case, the semantic
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requirement for completion is that the Turing complete device can be programmed to cal-
culate any recursive function of natural numbers. Then, in the general case, the semantic
requirement for completion is that the Turing complete device can be programmed to cal-
culate any computable function of its syntactic objects. Because of this, we will call any
semantics needed to fulfill the semantic requirement for completion functional semantics.
Please note that here we will only use ‘functional semantics’ in this sense.
¶3 · For the case of natural language, the closest is the case of lambda-calculus. In the case
of lambda-calculus, which is simpler than Lisp and uses the same syntax, the semantic
requirement for completion is basically fulfilled by an operation called beta-reduction and
a terminal symbol named lambda, see for example Barendregt (1985). Lambda tags the
variable in a function definition, and beta-reduction is a kind substitution that can be
applied to variables and to composed syntactic objects, and that obey some scopes of
application. As any meaning can be assigned to a variable, then variables have to be
processed independently of their meanings, and therefore a variable is like a pronoun,
or a word without meaning. By the way, calculating with words independently of their
meanings is a requirement for full problem solving, where pronouns as ‘what’ and ‘it’,
or temporal words introduced by ‘let-us-call-it-x’ formulas, do refer to something yet
unknown, and even to nothing if eventually the problem has not any solution.
¶4 · In summary, in the case of lambda-calculus, functional semantics deals with terminal
symbols, variables, and scoped substitutions of variables and syntactic objects. This can
be translated easily to natural language: terminal symbols are function words in gen-
eral, variables are pronouns, and scoped substitutions of pronouns and syntactic objects
are operations routinely used by natural language to resolve references before reaching
the meanings of content words. If Universal Grammar is Turing complete, as we pro-
pose, then Universal Grammar has to include the computing resources that implement
a functional semantics, and implementing one like this of lambda-calculus should not be
controversial, because function words natural place is not the lexicon, and the substitu-
tions mentioned can be executed by a computer that has no content words. In any case,
functional semantics is a semantics of syntactic terms and syntactic operations that deal
with computations of words independently of their meanings, so functional semantics is
the semantics of syntax, and then it should be part of syntax. We will call a syntax
extended with a functional semantics a complete syntax.
¶5 · In an extended syntax, the corresponding extended syntactic object has to include
completely the scope of the substitutions. Then, for example, when the reference of a
pronoun oversteps the sentence boundaries, the extended syntactic object will be multi-
sentential. This means that even a language with a very simple syntax, as for example
the Pirahã language described by Everett (2008), can be complete.
¶6 · My conclusion is that Universal Grammar satisfies both requirements for completion:
it uses an infinite decidable set of binary trees for its syntactic objects, and it implements
a functional semantics on them. The binary trees can be generated by Merge, as pro-
posed by Berwick & Chomsky (2016), but the implementation of a functional semantics
in the syntax core, which is what I am calling Universal Grammar, is beyond their pro-
posals. The functional semantics of Universal Grammar would include, at least, scoped
substitutions, temporal word definitions, and conditionals; see Casares (2016).
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§4 Learnability

§4.1 Native language
¶1 · Our thesis that Universal Grammar is a universal grammar implies that there are
not unlearnable languages. This is because any Turing complete device can emulate any
computing device, including the Turing complete ones, so any complete language can be
translated to any complete language, which is a well-known fact in computing.
¶2 · But some clarifications, which require an additional definition, are in order. We will
call the complete language in which a Turing complete device is directly programmed the
native language of the device. For example, in computing the native language is called
machine language or machine code, because it is executed directly by the computer
hardware. If the machine language is complete, then we can implement any language
on it, let us call it high-level language, and again, if the high-level language is complete,
then we can implement any language on it, and so on and on; more on this in §4.4.

High-level language Software
Machine language Hardware

Then, the first clarification: any complete language can be translated to any complete
language, but only a Turing complete device can do the translation, and the Turing com-
plete device needs a native language, which is complete. Only once the native language
is built in the hardware, are all complete languages fully translatable.
¶3 · In the case of persons, our assumption here is that our native language cannot be
used directly for communication. The reason is that if our native language could be used
directly for communication, needing no adapter, then it would be used and all natural
language complete syntaxes would be the same, but they are not.

§4.2 First language
¶1 · Another general agreement in linguistics is that not every language can be a natural
language, and for example Berwick & Chomsky (2016), page 126, affirm that there are not
natural counting languages. If this is true, then some additional restrictions are imposed
during the critical period, possibly to make language acquisition easier, because counting
languages can be learned. For example Fortran, one of the most successful computing
languages, was a counting language for a long time, from its introduction in 1956, see
Fortran (1956) pages 7–8, and continuing for decades, see Fortran (1966) §3.2–3.4, and
Fortran (1977) §3.2–3.4, until 1990 when free-form source input was allowed, see Fortran
(1990) §3.3.
¶2 · The native language is necessarily one, because it is the language in which the Turing
complete device is directly programmed, and we can learn any complete language, because
we are Turing complete, but it seems that human natural language is neither one nor
any. Therefore, in persons we should distinguish native language, first language, and
later languages. Let me present you a sketch of the situation.
¶3 · The native language is complete, genetically coded, and hardwired in our brain.
Possibly, our native language evolved for thinking, specifically for problem solving, and it
takes advantage of the natural parallelism of the neural network that is the brain. As it is,
the native language cannot be used for communication, possibly because communication
requires serialization, and then an interface with the sensorimotor system needs to be
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enabled. That interface is genetically coded, at least partially, and it seems that it has
to be developed during a critical period. Once the interface is developed, the native
language adapted by the sensorimotor interface results in the first language. The first
language can be complete, and it should be complete or otherwise it could not express and
mean any possible recursive function, that is, any possible algorithmic rule for change.
All human natural languages are first languages, and here we will assume that all are
complete. Thereafter, we can use the first language to learn by instruction any other
language, natural or artificial, complete or not. Because of the nature of the brain
processes, instruction should be supplemented by use and practice in order to convert the
learned language into hardware.
¶4 · In summary, we should distinguish native language development, first language ac-
quisition, and later languages learning.

Later languages ◦ Learning
First language ◦ Acquisition

Native language ◦ Development

¶5 · The question now is: How do these distinctions affect Universal Grammar? To answer
it, we must go back to the fundamentals: Universal Grammar is the genetic code for
language. Switching again from the code to the coded computing machinery, the native
language is implemented by Universal Grammar, and later languages are not. In the
case of the first language, the part of the interface that is genetically coded, which are
the conditions that were being enforced during the critical period, is implemented by
Universal Grammar, and the part acquired by experience is not. As I think it would be
beneficial to keep native and first language issues separated, we could say that the core
Universal Grammar implements our native language, while Universal Grammar generally
implements the base for all natural languages, including the native language and the
linguistic conditions imposed for acquisition; see below §4.4.

§4.3 Later languages
¶1 · By instruction given in the first language, we can learn any other complete language,
as Spanish or Lisp. That is the reason why there are teachers and manuals to learn
Spanish or Lisp. Instruction is a kind of learning available only to Turing complete
devices, because it requires a complete language. Note that ‘instructed’ for persons
corresponds to ‘programmed’ in computing. Then, the second clarification: once we have
acquired our first language, then we can also learn by instruction.
¶2 · With this distinction between language development, acquisition and learning, we
should rephrase the belief by Chomsky (1988), page 149, that Universal Grammar im-
plies that there are “unlearnable” languages. He argues that Universal Grammar has
certain definite properties, which are shared by all natural languages, and that these
same properties exclude other possible languages as “unlearnable”, meaning that we can
not “learn” a language that does not have these properties. As this applies to first lan-
guage acquisition, we should instead say that Universal Grammar implies that there are
unacquirable languages. So now we can state the third clarification: not every language
can be acquired, but we can nevertheless learn any language.
¶3 · The same correction should be applied to Gold (1967), if we hold the distinction.
He models two ways of “learning” a language: from text, that is, from a set of just
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positive examples; or from an informant, that is, from a set of evaluated (as right or
wrong) examples. This can be sufficient for acquiring a language, but it is insufficient for
learning a language, because then there is a third way: instruction.

§4.4 Language stacks

¶1 · In computing the stack of languages can also include a very high-level language on
top, an intermediate language in between, and even microcode below.

Very high-level language
High-level language

Intermediate language Software
Machine code Hardware

Microcode

Again, if all the languages in the stack are complete, then we can still program any
algorithm on the upper language, and it will be properly translated down to the hardware
to be executed. But technically, when microcode is used, the native language of the
computing device is the microcode, instead of the machine code, even though microcode
is not accessible from outside, because the device only accepts machine code instructions,
which are translated by hardware to microcode in order to be executed.

¶2 · Note that in persons, microcode would correspond to an inaccessible mental language,
known as mentalese, and machine code would correspond to our accessible natural lan-
guage. Then, using this analogy, our native language would be our mentalese and our first
language would be our machine language. But these are just computing approximations
that assume a fixed hardware, while the neural hardware of a living individual changes,
and therefore the actual situation will be fuzzier.

¶3 · In the case of the language used in this paper, the stack of complete languages in
which it is written is like this.

Mathematics Learned
English Learned
Spanish Acquired by experience

Natural language Acquired by genetics
Mentalese Developed

My first language is Spanish, and as any first language, part was acquired because of first
factor causes, genetic endowment, and part was acquired because of second factor causes,
experience, see §2.2. The part that depends on experience is, basically, the lexicon and
the complete syntax tuning.
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§5 Relativity and evolution
¶1 · Usually, in computing, an algorithm is coded in a high-level language, as Lisp, and
then translated to the machine language of the computer by a compiler or an interpreter.
We will assume that the efficiency of a computation is inversely related to the amount
of computer memory used and to the number of clock cycles needed to complete the
execution of the algorithm. Then, the efficiency of a Lisp computation depends on the
number of Lisp clauses needed to code the algorithm, which depends on how much the
problem to be solved by the algorithm fits the peculiarities of Lisp, and on the number of
machine instructions that the Lisp clauses generate, which depends on how much Lisp
fits the peculiarities of the machine language of the computer.
¶2 · The conclusion is that the language used to express an algorithm that solves a problem
affects its computation, although if the computer is Turing complete, then any algorithm
can be computed. Correspondingly for persons, language influences thinking but, if it
is complete, then language does not limit thinking, which is the weak version of the
linguistic relativity hypothesis.
¶3 · While we can program any algorithm in any complete language to solve a problem,
the difficulty of programming it and the efficiency of the resulting program depend on how
much the problem fits the complete language and on how efficient is the implementation of
the complete language in the Turing complete device. From this point of view, language is
a thinking tool that helps to express and to reason about problems, and then its purpose
is to translate those problems to the hardware that resolves them. The implication for
evolution is that Universal Grammar is an adaptation to the problems that humans were
facing and to the peculiarities of their neural hardware.
¶4 · That Universal Grammar has not evolved recently is shown by the fact that “an infant
from a Papua New Guinea tribe without any human contact for 60,000 years, growing up
in Boston from birth,” would acquire the very same Bostonian English that a neighbour
local child speaks, an example taken from page 150 of Berwick & Chomsky (2016). To
me, this happens because Turing completeness is a natural computing concept, and then
achieving it is reaching a peak of fitness; or rather the converse.
¶5 · Because Turing completeness is a pure computational property that does not require
any anatomical modification, I think it was achieved in the time frame of the anatomically
modern Homo sapiens, but before the African exodus. So I date the achievement of Turing
completeness in the same time frame that Berwick & Chomsky (2016) date the emergence
of Merge, from 60k to 200k years ago.
¶6 · But while the computational value of Merge is limited, Turing completeness is a
well-defined systemic computational property that makes a difference. In informal terms,
Turing completeness causes the gap that goes from a non-programmable calculator to
a full-programmable computer. More formally, Turing completeness is the capacity to
compute any recursive function entered as data, which is the capacity to calculate any
algorithmic rule for change. In other words, Turing completeness is the ability to do by
software whatever hardware does. A consequence is that a Turing complete individual,
as you and me, can imagine any change and its effects in his head before executing it,
while evolution has to modify the species body just to apply its trial and error procedure.
Thus, Turing completeness is evolutionarily disruptive. And, that our species is the only
Turing complete one explains the cognitive gap between our species and the rest.
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§6 Conclusion
¶1 · Computing is a point of view that defines decidability and Turing completeness, and
that distinguishes program from data and hardware from software. These concepts are
needed to explain the cognitive gap between our species, Homo sapiens, and all oth-
ers: we are the first and only species that achieved Turing completeness. Being Turing
complete means that we can do by software whatever hardware does, so we can imagine
anything that evolution could build, thus speeding up problem solving enormously. Tur-
ing completeness needs a complete language in which programs are treated as data, and
any complete language has to fulfill two requirements: its syntax has to be an infinite
set, which can be decidable, and it has to implement a functional semantics. Functional
semantics is the semantics of syntax, and then its place is the core syntax. This way we
reach our thesis: Universal Grammar is Turing complete.
¶2 · Our thesis that Universal Grammar is Turing complete implies that there are not
unlearnable languages. This together with the fact that natural languages are neither
one nor any, demands a distinction between native language, which is developed, first
language, which is acquired, and later languages, which are learned, where all natural
languages are first languages, and our native language is not accessible. Some conse-
quences follow from these distinctions:
◦ Not every language can be acquired, but we can learn any language.
◦ Instruction is a way of learning, once we have acquired a first complete language.

¶3 · Computing is a problem solving point of view from which language is a tool to
translate problems to the hardware that resolves them. Some more consequences follow:
◦ Language influences thinking, but a complete language does not limit thinking.
◦ Turing completeness is a fixed point in the evolution of Universal Grammar.

Universal Grammar evolved as a compromise that took into account its various functions
and its implementation. Universal Grammar functions include, at least, language, math-
ematics, and problem solving, and its implementation had to resolve its interaction with
other brain modules while still satisfying other engineering conditions.
¶4 · This is the theory I am proposing here for your consideration. The theory is firmly
founded on two bases: firstly, that the best point of view to explain syntax and language
is computing, which is the essence of Chomsky (1959), and secondly, that from the point
of view of computing, we humans are Turing complete, which is the essence of Turing
(1936). Then there are some assumptions that you will have to assess, but they are very
few, and the only important thesis is that Universal Grammar is Turing complete.
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